If it's not what You are looking for type in the equation solver your own equation and let us solve it.
47x^2+88x+39=0
a = 47; b = 88; c = +39;
Δ = b2-4ac
Δ = 882-4·47·39
Δ = 412
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{412}=\sqrt{4*103}=\sqrt{4}*\sqrt{103}=2\sqrt{103}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(88)-2\sqrt{103}}{2*47}=\frac{-88-2\sqrt{103}}{94} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(88)+2\sqrt{103}}{2*47}=\frac{-88+2\sqrt{103}}{94} $
| -5(x+3)=2x=3 | | -22=-10+x | | 1+4m=2+6m | | 2x=900-x | | 4^x=8^x+8 | | z/2+1=3 | | 2(x-5)=15-8x | | 2xX+10=22 | | 3y+4y−5=51 | | k+17=35 | | 40+0.40m=20+0.80m | | 1x+5-5=7-5 | | -2(3x+4)+7x=-10 | | 0.5f+7=15 | | -8-2x+7x=-13 | | 4x=-22-11x | | m-4-7m=-4 | | 10n=-8=8n | | u/3=74 | | 9d+3=39 | | F=5/3(n-80) | | 11x=5x+6x | | A=5x-3+5x(2x+4) | | 5x-11=3(2x-9)-x | | 0.8(20x-10)=0.75(16-32x) | | 4(3x+4)=-10 | | 6y^2+18y+24=0 | | 2h-15=7h | | X=760+.20y | | 5x-11=5x-27 | | 5y-16=2y+11 | | 3=x12+3 |